Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Target of rapamycin FATC domain as a general membrane anchor: The FKBP-12 like domain of FKBP38 as a case study.

Identifieur interne : 000469 ( Main/Exploration ); précédent : 000468; suivant : 000470

Target of rapamycin FATC domain as a general membrane anchor: The FKBP-12 like domain of FKBP38 as a case study.

Auteurs : Maristella De Cicco [Allemagne] ; Lech-G Milroy [Pays-Bas] ; Sonja A. Dames [Allemagne]

Source :

RBID : pubmed:29024217

Descripteurs français

English descriptors

Abstract

Increased efforts have been undertaken to better understand the formation of signaling complexes at cellular membranes. Since the preparation of proteins containing a transmembrane domain or a prenylation motif is generally challenging an alternative membrane anchoring unit that is easy to attach, water-soluble and binds to different membrane mimetics would find broad application. The 33-residue long FATC domain of yeast TOR1 (y1fatc) fulfills these criteria and binds to neutral and negatively charged micelles, bicelles, and liposomes. As a case study, we fused it to the FKBP506-binding region of the protein FKBP38 (FKBP38-BD) and used 1 H-15 N NMR spectroscopy to characterize localization of the chimeric protein to micelles, bicelles, and liposomes. Based on these and published data for y1fatc, its use as a C-terminally attachable membrane anchor for other proteins is compatible with a wide range of buffer conditions (pH circa 6-8.5, NaCl 0 to >150 mM, presence of reducing agents, different salts such as MgCl2 and CaCl2 ). The high water-solubility of y1fatc enables its use for titration experiments against a membrane-localized interaction partner of the fused target protein. Results from studies with peptides corresponding to the C-terminal 17-11 residues of the 33-residue long domain by 1D 1 H NMR and CD spectroscopy indicate that they still can interact with membrane mimetics. Thus, they may be used as membrane anchors if the full y1fatc sequence is disturbing or if a chemically synthesized y1fatc peptide shall be attached by native chemical ligation, for example, unlabeled peptide to 15 N-labeled target protein for NMR studies.

DOI: 10.1002/pro.3321
PubMed: 29024217
PubMed Central: PMC5775168


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Target of rapamycin FATC domain as a general membrane anchor: The FKBP-12 like domain of FKBP38 as a case study.</title>
<author>
<name sortKey="De Cicco, Maristella" sort="De Cicco, Maristella" uniqKey="De Cicco M" first="Maristella" last="De Cicco">Maristella De Cicco</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Chemistry, Technische Universität München, Biomolecular NMR Spectroscopy, Garching, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Chemistry, Technische Universität München, Biomolecular NMR Spectroscopy, Garching</wicri:regionArea>
<wicri:noRegion>Garching</wicri:noRegion>
<orgName type="university">Université technique de Munich</orgName>
<placeName>
<settlement type="city">Munich</settlement>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Haute-Bavière</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Milroy, Lech G" sort="Milroy, Lech G" uniqKey="Milroy L" first="Lech-G" last="Milroy">Lech-G Milroy</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biomedical Technology, Laboratory of Chemical Biology, Technische Universiteit Eindhoven, Eindhoven, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Biomedical Technology, Laboratory of Chemical Biology, Technische Universiteit Eindhoven, Eindhoven</wicri:regionArea>
<wicri:noRegion>Eindhoven</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dames, Sonja A" sort="Dames, Sonja A" uniqKey="Dames S" first="Sonja A" last="Dames">Sonja A. Dames</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Chemistry, Technische Universität München, Biomolecular NMR Spectroscopy, Garching, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Chemistry, Technische Universität München, Biomolecular NMR Spectroscopy, Garching</wicri:regionArea>
<wicri:noRegion>Garching</wicri:noRegion>
<orgName type="university">Université technique de Munich</orgName>
<placeName>
<settlement type="city">Munich</settlement>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Haute-Bavière</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg</wicri:regionArea>
<wicri:noRegion>Neuherberg</wicri:noRegion>
<wicri:noRegion>Neuherberg</wicri:noRegion>
<wicri:noRegion>Neuherberg</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29024217</idno>
<idno type="pmid">29024217</idno>
<idno type="doi">10.1002/pro.3321</idno>
<idno type="pmc">PMC5775168</idno>
<idno type="wicri:Area/Main/Corpus">000704</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000704</idno>
<idno type="wicri:Area/Main/Curation">000704</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000704</idno>
<idno type="wicri:Area/Main/Exploration">000704</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Target of rapamycin FATC domain as a general membrane anchor: The FKBP-12 like domain of FKBP38 as a case study.</title>
<author>
<name sortKey="De Cicco, Maristella" sort="De Cicco, Maristella" uniqKey="De Cicco M" first="Maristella" last="De Cicco">Maristella De Cicco</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Chemistry, Technische Universität München, Biomolecular NMR Spectroscopy, Garching, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Chemistry, Technische Universität München, Biomolecular NMR Spectroscopy, Garching</wicri:regionArea>
<wicri:noRegion>Garching</wicri:noRegion>
<orgName type="university">Université technique de Munich</orgName>
<placeName>
<settlement type="city">Munich</settlement>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Haute-Bavière</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Milroy, Lech G" sort="Milroy, Lech G" uniqKey="Milroy L" first="Lech-G" last="Milroy">Lech-G Milroy</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biomedical Technology, Laboratory of Chemical Biology, Technische Universiteit Eindhoven, Eindhoven, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Biomedical Technology, Laboratory of Chemical Biology, Technische Universiteit Eindhoven, Eindhoven</wicri:regionArea>
<wicri:noRegion>Eindhoven</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dames, Sonja A" sort="Dames, Sonja A" uniqKey="Dames S" first="Sonja A" last="Dames">Sonja A. Dames</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Chemistry, Technische Universität München, Biomolecular NMR Spectroscopy, Garching, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Chemistry, Technische Universität München, Biomolecular NMR Spectroscopy, Garching</wicri:regionArea>
<wicri:noRegion>Garching</wicri:noRegion>
<orgName type="university">Université technique de Munich</orgName>
<placeName>
<settlement type="city">Munich</settlement>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Haute-Bavière</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg</wicri:regionArea>
<wicri:noRegion>Neuherberg</wicri:noRegion>
<wicri:noRegion>Neuherberg</wicri:noRegion>
<wicri:noRegion>Neuherberg</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Protein science : a publication of the Protein Society</title>
<idno type="eISSN">1469-896X</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cell Membrane (metabolism)</term>
<term>Circular Dichroism (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Liposomes (metabolism)</term>
<term>Micelles (MeSH)</term>
<term>Models, Molecular (MeSH)</term>
<term>Molecular Dynamics Simulation (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Nuclear Magnetic Resonance, Biomolecular (MeSH)</term>
<term>Phosphatidylinositol 3-Kinases (chemistry)</term>
<term>Phosphatidylinositol 3-Kinases (genetics)</term>
<term>Phosphatidylinositol 3-Kinases (metabolism)</term>
<term>Protein Conformation (MeSH)</term>
<term>Protein Domains (MeSH)</term>
<term>Recombinant Fusion Proteins (chemistry)</term>
<term>Recombinant Fusion Proteins (genetics)</term>
<term>Saccharomyces cerevisiae (chemistry)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (chemistry)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Tacrolimus Binding Proteins (chemistry)</term>
<term>Tacrolimus Binding Proteins (genetics)</term>
<term>Tacrolimus Binding Proteins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Conformation des protéines (MeSH)</term>
<term>Dichroïsme circulaire (MeSH)</term>
<term>Domaines protéiques (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Liposomes (métabolisme)</term>
<term>Membrane cellulaire (métabolisme)</term>
<term>Micelles (MeSH)</term>
<term>Modèles moléculaires (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Phosphatidylinositol 3-kinases (composition chimique)</term>
<term>Phosphatidylinositol 3-kinases (génétique)</term>
<term>Phosphatidylinositol 3-kinases (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (composition chimique)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Protéines de fusion recombinantes (composition chimique)</term>
<term>Protéines de fusion recombinantes (génétique)</term>
<term>Protéines de liaison au tacrolimus (composition chimique)</term>
<term>Protéines de liaison au tacrolimus (génétique)</term>
<term>Protéines de liaison au tacrolimus (métabolisme)</term>
<term>Résonance magnétique nucléaire biomoléculaire (MeSH)</term>
<term>Saccharomyces cerevisiae (composition chimique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Simulation de dynamique moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Phosphatidylinositol 3-Kinases</term>
<term>Recombinant Fusion Proteins</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Tacrolimus Binding Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Phosphatidylinositol 3-Kinases</term>
<term>Recombinant Fusion Proteins</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Tacrolimus Binding Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Liposomes</term>
<term>Phosphatidylinositol 3-Kinases</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Tacrolimus Binding Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Phosphatidylinositol 3-kinases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines de fusion recombinantes</term>
<term>Protéines de liaison au tacrolimus</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Phosphatidylinositol 3-kinases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines de fusion recombinantes</term>
<term>Protéines de liaison au tacrolimus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cell Membrane</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Liposomes</term>
<term>Membrane cellulaire</term>
<term>Phosphatidylinositol 3-kinases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines de liaison au tacrolimus</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Circular Dichroism</term>
<term>Humans</term>
<term>Micelles</term>
<term>Models, Molecular</term>
<term>Molecular Dynamics Simulation</term>
<term>Mutation</term>
<term>Nuclear Magnetic Resonance, Biomolecular</term>
<term>Protein Conformation</term>
<term>Protein Domains</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Conformation des protéines</term>
<term>Dichroïsme circulaire</term>
<term>Domaines protéiques</term>
<term>Humains</term>
<term>Micelles</term>
<term>Modèles moléculaires</term>
<term>Mutation</term>
<term>Résonance magnétique nucléaire biomoléculaire</term>
<term>Simulation de dynamique moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Increased efforts have been undertaken to better understand the formation of signaling complexes at cellular membranes. Since the preparation of proteins containing a transmembrane domain or a prenylation motif is generally challenging an alternative membrane anchoring unit that is easy to attach, water-soluble and binds to different membrane mimetics would find broad application. The 33-residue long FATC domain of yeast TOR1 (y1fatc) fulfills these criteria and binds to neutral and negatively charged micelles, bicelles, and liposomes. As a case study, we fused it to the FKBP506-binding region of the protein FKBP38 (FKBP38-BD) and used
<sup>1</sup>
H-
<sup>15</sup>
N NMR spectroscopy to characterize localization of the chimeric protein to micelles, bicelles, and liposomes. Based on these and published data for y1fatc, its use as a C-terminally attachable membrane anchor for other proteins is compatible with a wide range of buffer conditions (pH circa 6-8.5, NaCl 0 to >150 mM, presence of reducing agents, different salts such as MgCl
<sub>2</sub>
and CaCl
<sub>2</sub>
). The high water-solubility of y1fatc enables its use for titration experiments against a membrane-localized interaction partner of the fused target protein. Results from studies with peptides corresponding to the C-terminal 17-11 residues of the 33-residue long domain by 1D
<sup>1</sup>
H NMR and CD spectroscopy indicate that they still can interact with membrane mimetics. Thus, they may be used as membrane anchors if the full y1fatc sequence is disturbing or if a chemically synthesized y1fatc peptide shall be attached by native chemical ligation, for example, unlabeled peptide to
<sup>15</sup>
N-labeled target protein for NMR studies.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29024217</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>01</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>02</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1469-896X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>27</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2018</Year>
<Month>02</Month>
</PubDate>
</JournalIssue>
<Title>Protein science : a publication of the Protein Society</Title>
<ISOAbbreviation>Protein Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Target of rapamycin FATC domain as a general membrane anchor: The FKBP-12 like domain of FKBP38 as a case study.</ArticleTitle>
<Pagination>
<MedlinePgn>546-560</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/pro.3321</ELocationID>
<Abstract>
<AbstractText>Increased efforts have been undertaken to better understand the formation of signaling complexes at cellular membranes. Since the preparation of proteins containing a transmembrane domain or a prenylation motif is generally challenging an alternative membrane anchoring unit that is easy to attach, water-soluble and binds to different membrane mimetics would find broad application. The 33-residue long FATC domain of yeast TOR1 (y1fatc) fulfills these criteria and binds to neutral and negatively charged micelles, bicelles, and liposomes. As a case study, we fused it to the FKBP506-binding region of the protein FKBP38 (FKBP38-BD) and used
<sup>1</sup>
H-
<sup>15</sup>
N NMR spectroscopy to characterize localization of the chimeric protein to micelles, bicelles, and liposomes. Based on these and published data for y1fatc, its use as a C-terminally attachable membrane anchor for other proteins is compatible with a wide range of buffer conditions (pH circa 6-8.5, NaCl 0 to >150 mM, presence of reducing agents, different salts such as MgCl
<sub>2</sub>
and CaCl
<sub>2</sub>
). The high water-solubility of y1fatc enables its use for titration experiments against a membrane-localized interaction partner of the fused target protein. Results from studies with peptides corresponding to the C-terminal 17-11 residues of the 33-residue long domain by 1D
<sup>1</sup>
H NMR and CD spectroscopy indicate that they still can interact with membrane mimetics. Thus, they may be used as membrane anchors if the full y1fatc sequence is disturbing or if a chemically synthesized y1fatc peptide shall be attached by native chemical ligation, for example, unlabeled peptide to
<sup>15</sup>
N-labeled target protein for NMR studies.</AbstractText>
<CopyrightInformation>© 2017 The Protein Society.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>De Cicco</LastName>
<ForeName>Maristella</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, Technische Universität München, Biomolecular NMR Spectroscopy, Garching, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Milroy</LastName>
<ForeName>Lech-G</ForeName>
<Initials>LG</Initials>
<AffiliationInfo>
<Affiliation>Department of Biomedical Technology, Laboratory of Chemical Biology, Technische Universiteit Eindhoven, Eindhoven, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dames</LastName>
<ForeName>Sonja A</ForeName>
<Initials>SA</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, Technische Universität München, Biomolecular NMR Spectroscopy, Garching, Germany.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>10</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Protein Sci</MedlineTA>
<NlmUniqueID>9211750</NlmUniqueID>
<ISSNLinking>0961-8368</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C471205">FKBP8 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008081">Liposomes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008823">Micelles</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011993">Recombinant Fusion Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.-</RegistryNumber>
<NameOfSubstance UI="D019869">Phosphatidylinositol 3-Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.137</RegistryNumber>
<NameOfSubstance UI="C083324">TOR1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 5.2.1.-</RegistryNumber>
<NameOfSubstance UI="D022021">Tacrolimus Binding Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002462" MajorTopicYN="N">Cell Membrane</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002942" MajorTopicYN="N">Circular Dichroism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008081" MajorTopicYN="N">Liposomes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008823" MajorTopicYN="N">Micelles</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056004" MajorTopicYN="N">Molecular Dynamics Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019906" MajorTopicYN="N">Nuclear Magnetic Resonance, Biomolecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019869" MajorTopicYN="N">Phosphatidylinositol 3-Kinases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000072417" MajorTopicYN="N">Protein Domains</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011993" MajorTopicYN="N">Recombinant Fusion Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D022021" MajorTopicYN="N">Tacrolimus Binding Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">NMR spectroscopy</Keyword>
<Keyword MajorTopicYN="Y">membrane mimetic</Keyword>
<Keyword MajorTopicYN="Y">protein membrane anchoring</Keyword>
<Keyword MajorTopicYN="Y">protein-lipid interactions</Keyword>
<Keyword MajorTopicYN="Y">protein-membrane interactions</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>07</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2017</Year>
<Month>10</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>10</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>10</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>1</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>10</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29024217</ArticleId>
<ArticleId IdType="doi">10.1002/pro.3321</ArticleId>
<ArticleId IdType="pmc">PMC5775168</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Sci STKE. 2003 Mar 11;2003(173):pe10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12631689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1996 Feb 13;35(6):1803-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8639661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Mar 5;285(10):7766-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20042596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2004;278:313-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15318002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 1995 Nov;6(3):277-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8520220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1995 Oct 6;270(5233):50-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7569949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 2014 Feb 13;118(6):1481-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24451004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging (Albany NY). 2009 Apr 20;1(4):357-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20157523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Obes Rev. 2012 Dec;13 Suppl 2:58-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23107260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jan 2;279(1):772-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14578359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 2014 May 8;118(18):4817-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24725177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biochem. 2008 Jan;307(1-2):249-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17874175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2006 Feb 21;45(7):2339-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16475823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1997 Dec 29;241(3):704-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9434772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2000 Sep 12;39(36):11024-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10998239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chembiochem. 2010 Nov 2;11(16):2251-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20922740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2011 Mar 4;144(5):757-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21376236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurosignals. 2008;16(4):318-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18635947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Chem Biol. 2015 Feb 20;10(2):475-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25386784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2007 Oct;16(10):2153-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17893361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2010 Apr 16;141(2):290-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20381137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 May 27;280(21):20558-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15772072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2014 May 2;588(9):1755-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24704685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2009 Sep;1791(9):949-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19264150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2009;498:265-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18988031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2008 Feb;9(2):112-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18216768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2012 Oct;21(10):1566-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22825779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protoc Protein Sci. 2001 May;Chapter 15:Unit15.1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18429125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2012 Jun 19;51(24):4909-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22620485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Nov 9;318(5852):977-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17991864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Nov 30;294(5548):1942-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11729323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Membranes (Basel). 2015 Sep 29;5(4):553-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26426064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2013 Feb 6;135(5):1919-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23294159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2011 Oct 15;124(Pt 20):3381-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22010196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2000 May;25(5):225-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10782091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Apr 9;110(15):5927-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23530194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2011 Dec;23(6):744-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21963299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2012 Apr 13;149(2):274-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22500797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Sep 19;283(38):25963-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18658153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1989 Jun 13;28(12):5113-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2669968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Nov 24;275(47):37011-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10973982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Oct 21;286(42):36907-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21846933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 2005 Aug 11;109(31):15098-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16852911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Lipid Res. 2010 Aug;51(8):2454-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20348589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2006 Oct 3;45(39):11713-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17002272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2001 Jul;2(7):504-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11433364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2011 Aug;1808(8):1957-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21477581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2003 Jan;5(1):28-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12510191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2015 Mar 15;128(6):1065-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25774051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2005 Jul 20;24(14):2688-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15990872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2003 May;14(5):1882-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12802062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2008 Oct 10;32(1):140-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18851840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2003 Mar;14(3):1204-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12631735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2013 Mar 6;135(9):3367-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23409921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Jul 5;288(27):20046-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23671275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Aug 2;277(31):28127-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12000755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2009 Mar;20(5):1565-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19144819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Mar 19;285(12):8621-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20048149</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
<li>Pays-Bas</li>
</country>
<region>
<li>Bavière</li>
<li>District de Haute-Bavière</li>
</region>
<settlement>
<li>Munich</li>
</settlement>
<orgName>
<li>Université technique de Munich</li>
</orgName>
</list>
<tree>
<country name="Allemagne">
<region name="Bavière">
<name sortKey="De Cicco, Maristella" sort="De Cicco, Maristella" uniqKey="De Cicco M" first="Maristella" last="De Cicco">Maristella De Cicco</name>
</region>
<name sortKey="Dames, Sonja A" sort="Dames, Sonja A" uniqKey="Dames S" first="Sonja A" last="Dames">Sonja A. Dames</name>
<name sortKey="Dames, Sonja A" sort="Dames, Sonja A" uniqKey="Dames S" first="Sonja A" last="Dames">Sonja A. Dames</name>
</country>
<country name="Pays-Bas">
<noRegion>
<name sortKey="Milroy, Lech G" sort="Milroy, Lech G" uniqKey="Milroy L" first="Lech-G" last="Milroy">Lech-G Milroy</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000469 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000469 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29024217
   |texte=   Target of rapamycin FATC domain as a general membrane anchor: The FKBP-12 like domain of FKBP38 as a case study.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29024217" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020